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When the frequency of the harmonic oscillator is slowly varying in time, the in- 
variants can be expanded in powers of a small parameter characterizing the slowness of 
the variation. It is the purpose of this paper to present a recurrence procedure yielding, 
with the help of an algebraic computer program, the terms of the adiabatic invariants 
determined up to the tenth order. The obtained formulas are checked over with two 
examples. 

1. INTRODUCTION 

When the parameters of a physical system are slowly varying under the effect 
of external perturbations, some quantities are constant at any order of a small 
parameter E characterizing the slowness of the variation. Of course, this does not 
imply that these quantities are exactly constant but that their variation goes to zero 
faster than any power of E. Such quantities are called adiabatic invariants. 

To find the series of adiabatic invariants for the harmonic oscillator a procedure 
has been proposed by Kulsrud [l] and later by Lewis [2], who determined a class 
of exact invariants. In this paper we suggest an iterative procedure derived from 
Chandrasekhar’s method [3], which has been shown to be equivalent to the Lewis 
method [4]. A recurrence formula is obtained and used to get the diierent terms 
of the expansion with an algebraic computer language (FORMAC). The numerical 
value of the adiabatic invariants can be obtained up to order ten. 
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Two examples are given and discussed. In the first case the adiabatic series 
converges strictly to the exact invariant. In the second case a nonadiabatic jump 
cannot be avoided and the series, which looks numerically like an asymptotic one, 
gives a slightly modified value of the invariant. Values of E are found which are 
small enough for the nonadiabatic jump to be quite negligible but big enough to 
exhibit an improvement when high order invariants are considered. 

2. ANALYTIC TREATMENTS OF ADIABATIC INVARIANTS 

Consider the general equation of the linear oscillator, 

2 + w”(t)q = 0, 

where the Hamiltonian for unit mass is 

H = g-J.9 + w2q2) (2) 

and q and p are the conjugate coordinate and momentum. 
In the case of a slowly varying frequency, the ratio, energy/frequency, is well 

known to be the zero order adiabatic invariant, the tist and second order adiabatic 
invariant are 

L1 = K, -I- l K, and L, = K. -I- EK, f l 2K2 , 

respectively, where: 

K. = E/w, 

& = do @ 1 dt2wa’ 

q2 dw 2 3K2 = - - 
( ) 

1 d2w 3 /ho- 2 
80~ dt +&J-z T-- [ ( >I 2w dt ’ 

(3) 

as first derived by Kulsrud [I]. 
In Eq. (3) the parameter E appears automatically if we take w = w(u) with 

u = ct. But the method given by Kulsrud is of no use to compute high order 
invariants because of the difficulty of the calculus. Two other methods can be used 
to find the adiabatic series. 
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A. Lewis’ Method 

To solve Eq. (1) Lewis introduced a new variable and a new function: 

q=Qw, 

e = Jot & dt’, 
Eq. (1) is, therefore, equivalent to the system, 

d”Q ,,,+Q=O, 

d2w 

consequently, 

Z = ; [Q2 + ($+)“I 

is an exact invariant for the motion. 
Taking into account Eq. (4), Eq. (7) becomes 

I= i[f+ (q$- w$‘]. 

(4) 

(5) 

(6) 

(8) 

As any initial condition on w, (dw/dt) may be taken as Eq. (8) deIInes a family 
of exact invariants. 

Now, assuming that w is a slowly varying function of time and taking o = 
O(U = et) the differential equation for w becomes 

8 g + w”(u) w = w-3, (9) 

so that a perturbation method can be used to solve Eq. (9). We look for a solution 
to the form, 

w = w, + E2W2 + a’* + P w2* + *a*. (10) 

The zero order solution of w, namely w,, , is easily found, 

w, = 6J-112. (11) 

Introducing Eq. (11) in Eq. (8) we see that the zero order adiabatic invariant is 
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Equation (12) shows that the two first terms and a part of the third term of the 
Kulsrud series are recovered. Unfortunately this last method is difficult to use for 
solving the problem of high order invariants. 

B. Chandrasekhar’s Method 

Following Chadrasekhar [3] let us introduce in Eq. [l] a new variable tl and a 
new function qI given by 

which gives 

d2ql dt,2 + W1241 = 09 

(13) 

(14) 

with 
d2 q2 = 1 + w-3/2 s (o-1/2). (15) 

Again, it is useful to introduce explicitly the slowness of the time variation of o 
through the change of variable u = ct. Equation (15) is changed in 

(16) 

This procedure may be repeated and the general expressions, 

yield 

with 

I 
dtk+, _ & - wk > 

112 
qk+l = *k qk ’ 

d2qk+1 + w;+,q,+, = 0 
-G- 

9 

4+1 = 1 + wg3/2 $f- k2 (~~1’2). 

(17) 

(W 

As an e2 factor appears at each step in the second term of Eq. (16), for k = n, 
2 OJ~+~ can be taken strictly equal to 1, which closes the iterative process. 
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Now the product, 

pn = (wq . . . w&1/2, 

has been shown [4] to be equivalent to the development of w up to the 2nth order 
and to satisfy 

-4 
Pn = *IPnwl + w2. cw 

The pn series is infinite and contains some parts of the higher order corrections 
of w. We consequently get a new way to compute the adiabatic invariants by 
replacing w by pn , in Eq. (8), so that 

Jn=;[$- + (Pn * 2 - q - fg)“]. 

C. Comparative Study of the Three Methods 

If in the expression of I given by (8) we replace w by its 2nth order approximation 
we get the Lewis adiabatic invariant I, . Now expanding I,, in powers of E, we 
obtain an infinite series (because of the l/w3 term). As has been shown for the zero 
order, if we keep the 2n + 1 first terms of this series we recover strictly the Kulsrud 
adiabatic invariant of order 2n + 1. Consequently we can write 

I, = Lzn+l + 0(++2). 

O(E 2n+2) stands for a sum of terms going to zero at least as fast as E~*+~. 
Now pn is equivalent to the development of w up to the 2nth order in E the same 

relation can be writhen for J,, 

J, = L2n+l + 6’(~~“+~). 

Therefore, if E is small enough the three methods are equivalent, but the series 
4, J, , and &,+I have different radius of convergence. 

Let us remark that the Lewis and the Chandrasekhar methods give expansion 
in l 2 so that computing one more term in the series is equivalent to computing 
two orders more in Kulsrud series. 

Finally let us point out that our proposed method [getting pn from the recurrence 
formula (20) and introducing this value in the expression (8) of the exact invariant] 
is the Zeast analytical but the most suitable to numerical computation. We do not 
need the knowledge of analytical expression for L, or w. The only work to be done 
is a recurrent differentiation of (20). We show in the next section how we do it. 

581/12/3-3 
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3. COMPUTATIONAL PROCEDURE 

Using a development of Eq. (9) Lewis [2] gives the expression of w up to ~6 
which is equivalent to p3 . From a computational point of view (20) is much more 
interesting. We carry out successive derivations and do not have to expand w-3 
but only to manipulate a recurrence formula. 

In the Lewis method analytic expressions of the quantities wzn are needed in 
order to build w~%+~, and similarly in the Kulsrud method we must have an 
analytic expression for each coefficient. The interest of our iterative method is 
that we can work out numerical algorithms to get the higher order terms. (It is well 
known that for numerical computations iterative formulas are very useful.) 

Instead of computing pn through Eq. (20) it is more convenient to use the 
expression, 

R, = pn4 = (wq ..a w,J2 

getting rid of the fractional powers. Equation (20) becomes 

(22) 

Rj+l = & RT2 (f!$)2 - ; R;l i$i + w2, (23) 

We write (23) under the form, 

where the dots indicate the derivative with repect to time. 
The successive derivatives of (24) can be formally obtained. However, their 

determinations become intricate very rapidly. Consequently, an algebraic language 
such as FORMAC can be used, 

(25) 

Equation (25) is formally written 

Rj+l = fi(Rj 5 A,, R,, Xj 9 W, h). (26) 

The derivation is carried on 

#j+l = fi(Rj 3 &j 9 1.j) Xj 3 Rp’, 03 C, G). 

The (2n - 2) derivative, i.e., d2n-2(Rj+J/dt21a-2, is, therefore, a function of 

Rj , I?* ,..., Rj+l), Rpn’, w, c.6, i3 ,..., CJJ(“+~). 
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It must be pointed out that the algebraic language gives the formal expressions: 

afo .afo . ah .a. ah . ah . 
aRj ' aRj ' Zj ' aRj ' T@ ' a#, "** 

The expressions 

ah afl afl - - ,... Zvw) a6 

are quite trivial and do not need the help of a computer. Once this algebraic part is 
done, the calculations will be entirely numerical. 

We have now to deal with 2n - 2 formal expressions. Starting with R,, (that is 
to say w”) and its 2n first derivatives numerical values at time t, , we can compute 
on RI(&), @to)... Ri2’+“(t,). 

Introducing these new values in the same formal expressions, we get R2(t0), 
~2W,..., R, (2*-4’(t0), etc. Thus, at the end of the process, we get numerical values 
of R, , R2, R3 ,..., R, at time t, . 

4. APPLICATION OF THE ADIABATIC INVARIANT IN Two PARTICULAR CASES 

A. Only Adiabatic Effects are Present 

Choose (see Fig. 1) 

w(t) = (,t)-+@+l. (27) 

time 

FIG. 1. Function o(t) = t-‘/‘. 
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FIG. 2. 
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time 

Adiabatic invariant J1-J6 with 00) = Pla for time 2 < t < 8. Note the asymptoticity 
of the series. 
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FIG. 3. Adiabatic invariant Js-J5 with o(t) = t-ela for time t < 50. We are in good adiabatic 
conditions and the series converges absolutely. 
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FIG. 4. Function o(t) = 1.545 exp --T*. 
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FIG. 5. Adiabatic invariant JBJS for time 0 < t < 8. 
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0 2. 4. 

time 

FIG. 6. Adiabatic invariant J1-J6 for 

6. 

It has been shown [2] that there is an exact solution of (6) which is 

w = tn/2n+1 ( G(t, e)12, 

G(t,e) = [j+ (n+k)! ( 
2i (2: + 1) 

k 

I 

112 
k!(n - k) ! 

t-k/Wa+l) . (28) 

1 G(t, l )j2 can be expanded in terms of c2k so that we get the Lewis expansion for W. 
Figs. 2 and 3, show the results for E = 1 with it = 1, i.e., for w(t) = t-2/3. Because 
of the divergence of o for t = 0 this case has no physical meaning but is interesting 
because the exact solution of Eq. (6) and the value of the exact invariant can be 
obtained. See [2]. 

Another interesting point is the difference of behavior in the terms of the series 
for different times. In Fig. 2 t goes from 0 to 8 and in that interval the adiabaticity 
conditions h/w2 < 1 are not fulfilled. For time t -C 2.5 all the invariants blow up 
on the figure due to the fine scale used. For 2.5 < t < 6, .J3 is the best approxima- 
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tion. But for a larger time (Fig. 3) the frequency variation is adiabatic, and the 
convergence of the J, series is confirmed by the numerical calculations. The 
exact invariant towards which J, converges can be very precisely obtained. It 
must be pointed out that in this case there is no nonadiabatic jump, i.e., that the 
final value of the adiabatic invariant is strictly equal to the value of the exact 
invariant. 

This can be very simply explained. In that case (28) shows that w(t) = W 
(1 - t-2/3/9)1/2 and will converge for any time t > l/27. It must be noticed that 
our series seems to require a much bigger value of t for convergence. 

B. Nonadiabatic Case 

Figs. 5-8 show the results for the function, 

w(t) = 0, - (0.1, - coo) exp(-•E2t2), 

with o, = 1.5, w0 = 1 .O and different values of ~(0.1, 0.15, 0.20, 0.25). 

I I 

0 2. 4. 6. 0. 

time 

FIG. 7. Adiabatic invariant J1-Js for time 0 < t < 8. 
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1.6 

1 

0 1. 2. 3. 4 
time 

FIG. 8. Adiabatic invariant J0-J6 for time 0 < t < 8. 

This example has been studied by Howard [5] who gives numerical calculations 
for L, = K,, + cKl + 8K2. As already pointed out our J,, is roughly equivalent 
to his K. + rK, approximation while our J1 goes up to order 3 in E. 

Figures 5-8 show the dJ curves where AJ = J, - I versus time for different II. 
We need a very fine scale to exhibit on the figures the variation A.J. For E = 0.1 
(very good adiabatic conditions) Fig. 5 shows the unavoidable nonadiabatic jump. 
While Jo and J1 are completely out of scale (one should notice the very small 
(lo+) relative variation for the entire plot) J5 is the best curve smoothly varying 
from the initial to the final one without any oscillation. For E = 0.15 (Fig. 6) we 
must point out 

(a) a much larger ordinate scale (1O-3 in relative value) 
(b) J4 and Js are the best curves, J5 presenting no marked improvement 

upon J4. For E = 0.2 (Fig. 7) the asymptotic nature of the series is confirmed. 
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.I3 and J,, show the smoothest variation, J5 is definitively worse, and a “giant” 
nonadiabatic jump (compared to the preceeding one) is obtained. Finally the case 
= 0.25 (Fig. 8) is similar. Notice that J,, now appears on the figure. This jump 
has been shown to decrease with E as exp - q/c, where 77 is a constant [5,6]. This 
means that the jump goes to zero faster than any power of E. This is in agreement 
with both Howard and our results. We found r] = 1.52. 

5. SOLUTION OF THE HARMONIC OSCILLATOR EQUATION 

What is the use of the high-order adiabatic invariants ? The answer is suggested 
in Fig. 5. We see that the constancy of J, is an indication of how the pn approxi- 
mates w, one of the exact solutions of Eq. (6). Consequently, if we are interested in 
solving Eq. (1) it is important to get an approximation of w valid for all times. 
This can be seen on Eq. (5), where the new variable f3 is shown to be the integral 
of IV-~. Consequently, although for time t = 8, we see that the differences between 
J3, J4, and Js are bigger than the unavoidable nonadiabatic jump, we can predict 
that the large variation of J3 between t = 0 and t = 3 will give a solution much 
worse than J4 and J5 . This last quantity just experiences the nonadiabatic jump 
without any further variation. 

To check this idea the solution of (1) was obtained in the following way. pn was 

,2. ,3. ,4. ,cj. ,6. J. 
time 

FIG. 9. Exact and approximate solutions, q2 and qs, w(t) = 1.5 - .5 exp - P/100. 
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1. 

0 
9-4, 

ld7 

- 1. 

-2 
0 2. 4. 

time 

6. 8. 

FIG. 10. Exact and approximate solutions, q9, q4, and qs = - , w(t) 1.5 .5 exp --P/100. 

computed as previously indicated and the approximation, w = pn , was introduced 
in (4), (5), and (6). More precisly we have 

Ut> = Iot + dt’, 
(2% 

Qn=A,costl,+B,sin8,. 

Where A, and B, are determined from the initial conditions on qo and p,, through 
the relations, 

Qa<O> = An = qo/pn(% 

(dQnldbJtO> = &a = P,@) 40 - MO) qo . 

For the value of the parameters indicated on Fig. 5; we have computed (29) 
with a numerical integration scheme involving only 15 points for the entire interval, 
O-8. Figures 9 and 10 indicate the difference between the different approximations 
and the exact solutions obtained by a Runge Kutta method. Indeed the improve- 
ment is still important when we go from p4 to p5 . Of course, the difference is very 
small and the computation of high order pn is only justified if we need a great 
accuracy. This can be the case in some astronomical problem (or motion of 
particles in nearly periodic orbit-for example, due to a slow variation in the 
magnetic space field). 



HIGH ORDER ADIABATIC INVARIANT 329 
. 

6. CONCLUSION 

In this paper we showed how the technical problem of computing high-order 
adiabatic invariants have been solved (up to order ten in E). However, it must be 
pointed out that in most cases the asymptotic convergence of that series raises 
important problems. 

When E is very small, the final value is rapidly obtained and the higher-order 
contributions are quite negligible unless very precise results are desired. On the 
other hand, if E is not very small the series very quickly becomes divergent (at 
order 2 or 3), no improvement can be expected, and the obtained high-order terms 
are not very useful. 

These difficulties with adiabatic series are due to the fact that we want to get a 
valid solution for all times. If we give up this ambitious goal and content ourselves 
with a solution valid from time O-T (where T is somewhat related to the small 
parameter by the relation T < l/c) we can get a formula much more interesting 
from a numerical point of view. 

The idea is to use an expansion in the small parameter E with X = X0 + 6X1 + 
E2X2 +-a*. Now the initial conditions are fully absorbed by the zero order term 
X,, , i.e., X(0) = X,(O) and X(0) = X,,(O) the higher orders are computed taking 
carefully into account initial conditionsX,(O) = X,(O) = . . . =X,(O) =X2(O) = . . . = 0. 

Secular terms can arise but they will in the worst case vary (~t)~ and, conse- 
quently, provided we take ET < 1, they will not give us any trouble. After this 
“step” T the process is repeated the value of X(T) and x(T) being again absorbed 
by X0 and &, . This is identical to a classical numerical scheme but with “giant 
steps” and fully taking into account the possibilities of treating analytically some 
part of the equations. Such algebraic numerical method has been used for 
the Mathieu equations and has given very encouraging results. 

APPENDIX- ALGEBRAIC COMPUTATION 

As we have already pointed out we compute only the successive derivatives of 
the expression, 

It can be easily seen that these derivatives can be written under the following form: 

F = y ZC(k, j)/Ri. 
J=l 



330 FEIX ET AL. 

The FORMAC program computes the algebraic expression of the ZC(k,j) 
which obviously are functions of the R derivatives. The obtained formulas for ZC, 
which permit the obtention of the ten first derivatives of the recurrence formula 
(and consequently the numerical computation of the R, , R2 ,..., R,), are shown 
hereafter. 
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.?C(9,4J = 0~7)*0(1~+*3*204 + 0(6)*D(21+0(1)*+2*14389/2 I + D(5)*D 
~31*D(11+*2*4452 + D~5l*Dl2)**2*Dll)*~l3419/2 J + D(41+Dt3)+D(21* 

D(l)*22575 + D(4)*0(2~+*3*5670 + D(4)+*2*0(11++2*(22365/6 ) + D(3 
)**2*D(2)**2+(22785/2 I + D~3)**3*D~1)*5040 
ZC(@r51 = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
1~**3*30240-D~4~*D~2~~*2~Dl1~*~~~68355-0~31~0~2~~~3*D~1~~919~0-D~ 
3l**2*D~2~*D~1l**2+9l56O-Dl2~**5*693O 
ZC(Rs6) = D(5I*Dtl)+*5*9030 + D~4~*D~2j+D(1~++4*114$50 + D(3)*D(2 
)**2*Dl1~**3*462000 + 3(3)*+2*D(11+*4*76650 + D12)*+4i+D(1)*+2*( 
34807512 I 
ZC(Re7) * -D~4)*D~1~+*6*45990-00+0~2~*D~1~**5*556920-D~2l**3*D~ 
11**4*699300 
ZClA,Bl = 0~3~*0(1)*+7*1S6480 + D(2)+*2*D(11**6*983430 
ZC(9r9) = -D(Z)*D(1)**8*564480 
ZC~6tlOl - D~11**10*113400 

ZC(9,l) = -D(lll*tl/4 1 
X(912) = D(lO)*D(1)*(23/8 I + D(9~*0(2)*(119/'3 1 + D(BlfD13)*( 
lH3/4 I + Dt7)*Dt41*93 + D(6l*Dl5)*(525/4 I 
ZC(9s3l = -D19)+D(l)+*2*(239/8 ~-Df6l"D~2~fDll~*~11U7/4 I-0(7)*0( 
3~*D~1~+~53-D~71*Dl2)++2+567-~~6~*D~4)+D~l~*~266~/2 I-D(6I*D(3)*D 
f2~*26S8~DISl*D~4~*D~2~*~6127/2 I-D(5)*0(3)*+2*(5439/2 I-D151**2* 

D(1)*(3213/4 )-0(4)++2*0(3)*(6825/2 I 
ZCl9r4J = D(8)*D11J++3+l2223/8 ) + D(7)*D(2l*DL1)**2*(6S31/2 I + 
D~6l+D~3)*0(1)*+2*~16191/2 ) + Dl6)*D~2J+*2*D(1)*~2436l/2 1 + D(5 
~+D~4)*Dl1)**2*l48951/4 1 + D~5~*D~3)+DlZ)*D~11*49329 + Dl5)*D(2) 

+*3’(24759/2 I + Dl4)*Di3l*D(2)**2*62370 + D(4~*Dl3)**2*D~l)*l 
82845/L I + D~4)**2*Ol2l*D(1)*~123795/4 1 + D(~)**3*DI2)*27825 

500~50-U(4~*D~21*“3*D~11*251370-~~~~*D~~~~*4~~2~~~~-~l~)~u~u~(~~ 
l *7*(3L845/2 l-D~3~**2*0~2~**Z*Ul1)*504630-0(3~++3+0(~)**2*11~72D 
ZC(9t6). = Dlb)*D(11**5*163SO + D15)*D~21*D~11**4*24Y4S0 + D(4)*D( 
31*0(11*+‘+*~19950 + 0l~l*D~2~*+2*D~1l+*3+12615/5 + U13)*D(2)**3*D 
~11*+2*254205U + D~3)+*2*Dl2)*Dl1)**3+1688400 + D(2j**5*D(l)* 
38272F 
zct9*71 = -D~51*Dl11**6*100170-~~4~*D~2~~D~1~**5*15~9560-D~31*Dl2 
~**2*D~1~**4*~654500-D~3~~*2*Df1~**5+101662D-D~2)**~*D~~)**3* 



PAGE 3 

3R41425 
ZC(9,Pl = 0~41*0~1~++7+508410 + 3~3~+0~21+0l1~*+6~7~70660 + D(2) 
*+3*0(1~*'5*107956A0 
ZC~9991 = -0~3)*D~1~**8*2056320-0l21**2+Dl11++7*123832’80 
ZC(‘ltlO) q D~2~+D~l)++9*6214320 
ZC(9rll) = -Dl11**11*1134000 

ZC~lOtl) = -D(12)*(1/4 I 
ZC~10~21 = D~ll)*Dll)*l25/8 1 + D(lO)*DI2)+(71/4 1 + 0(9)+0(3)*( 
485/8 I + 018)+0~4)*1555/4 1 + 017)+D(5)+(897/4 1 + D(6)~2+l525/ 
4 I 
ZCflOt3) = -0llO~+D~l~+*2*l2A5/& )-D~9)*Dl2)*Di1)+(1465/4 )-D(8)* 
0(3)+0(1)*(4485/4 )-0(81+0(2l*+L+(3375/4 ~-D~7~+Dl4~rDl~)+l4545/2 

~-0(7~*Dl3~*0(21*4575-D~6~*0~5~*0l1~*~6405/2 )-0(6)+0(4I+D(2)it 
8085-0(6)+DI3)**2w(lOY15/2 )-0(5l+DL4)+0(3)*(32655/2 )-0(5)**2*0( 
2)*119467/4 J-0(4)++3*(682!/2 I 
ZC(10,4l = D(9~*D~1)++3*~735/2 1 + D~S~*D(2~rD(1~*~2~(40635/8 1 

+ 0~7~+D~3~+0~1~++2+13770 + 0(7)~D(2)*+2+D(l)~l41445/2 1 + D(6)* 
0(4)*0(1)++2+(97335/4 1 + D~6)*Dl3)*D~2)*Dlll+97965 + D(6)+0(2)~ 
3”24570 + D(51*0(4)*D~2)*D(l)*l295785/2 1 + 015)*Dl3)+0(21**2*( 
297675/2 I + D(5)*D~3)*+2*D(1)*98910 + D(4)*D(3)*~2+D(2)*L499275/ 
2 ) + 0’5)++2*0(1)**2*(29295/2 1 + 0~4)**2*D(3)+D~lJ*(496125/4 1 

+ 3(4)++2+0(2!**‘+(373215/4 1 + 0(3)++4+27825 
ZC(1015) = -0l8~*0~1~+*4*l6795/2 )-D~7)*Dl2)+D(1)**3*5544O=Dl6l*D 
l3~"0~11*~3+131040-0~6~*0~2~**2*0~1)++2+295765-D~5~~D~4~~D~1~**3* 
197A20-0~5~~D~3~+0~2~~0~1~**2~1194480-0~5~*D~2~~~3*~~1~*599130~0l 
41+D~3l*0~2~+*2*0~1~~3014550~0f4~*Dorr2*0~1~~*2*1001700-D~4~~0~ 
2)+*4+378000-0(4)**2+Do+0(1)++2*11497825/2 I-0(3)*+2+0(2)+*3+ 
1011150-0~3)**3*0(2~*Di1~*1344000 
ZC(lOt6) = D(7)*D(1)**5*27610 + D(6)*D(2)*DL1)+*4*494550 + DO)*D 
~31+0~1)+*4*998550 + 0~5)*0~2~*+2*0~1~**3*3005100 + D(4)*0(3)*D(2 
~*Dll~**3*10080000 + D(41*D(2)**3*D(ll++2.7583625 + D(3)*0(21*+4+ 
D(l)*7630875 + 0(4)**2*D(1)++4*(1252125/2 1 + 0(3)*+2*D(2)+*2*0(1 
)**2*15214500 + D~3)~+3~D(ll+*3*2247ooo + 0(2)*+6*392725 
i!C(lOtf) = -0~6~~0l1l*+6"198450-0l5~~0~2~~0~1~**5~3617460-D~4~~0~ 
3~+D~1~~*5*6066900-0~4~~0l2~~*2~0~1~~*4~22821750~D~3~*D~2~~*3~0~1 
~**3*61236000-0~3~+'2*D(2~*D~1~**4*30523500-0~2~~~5*0l1~**2* 
13820625 
ZC(lOt8) = D(5)*0(1)**7*1209600 + 0~4~*0l2~*0~1~*+6*21366450 + D( 
3)*0~2~*+2+0~1~**5*128992500 + 0l3)*+2*011l+*6*14288400 + D12)*+4 
*0(11*+4*.30868375 
ZC(1019) = -D~4)+0~1~*+R~6123600-D~3~~0~2~~D~1~**7*Y8582400-D~2~ 
l ~3*0(1)+*6+173048400 
ZC~10t10l = D(3)*Dll)**9*24721200 + 0~21**2*0(1~+*8+16737640O 
ZC~lO*ll) = -0~21*D~1~**10+74617200 
Zc(lOv121 = 0~1~*+12+12474000 

ZOTATIORS OF FCRThq 
D(j) u 

means W *indicates a multiplication 
r + indicates an erponentiation 

For -ample Z 0 (2,2) should be read s - 


